Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Kidney Int ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521406

RESUMO

Cardiovascular disease, infection, malignancy, and thromboembolism are major causes of morbidity and mortality in kidney transplant recipients (KTR). Prospectively identifying monogenic conditions associated with post-transplant complications may enable personalized management. Therefore, we developed a transplant morbidity panel (355 genes) associated with major post-transplant complications including cardiometabolic disorders, immunodeficiency, malignancy, and thrombophilia. This gene panel was then evaluated using exome sequencing data from 1590 KTR. Additionally, genes associated with monogenic kidney and genitourinary disorders along with American College of Medical Genetics (ACMG) secondary findings v3.2 were annotated. Altogether, diagnostic variants in 37 genes associated with Mendelian kidney and genitourinary disorders were detected in 9.9% (158/1590) of KTR; 25.9% (41/158) had not been clinically diagnosed. Moreover, the transplant morbidity gene panel detected diagnostic variants for 56 monogenic disorders in 9.1% KTRs (144/1590). Cardiovascular disease, malignancy, immunodeficiency, and thrombophilia variants were detected in 5.1% (81), 2.1% (34), 1.8% (29) and 0.2% (3) among 1590 KTRs, respectively. Concordant phenotypes were present in half of these cases. Reviewing implications for transplant care, these genetic findings would have allowed physicians to set specific risk factor targets in 6.3% (9/144), arrange intensive surveillance in 97.2% (140/144), utilize preventive measures in 13.2% (19/144), guide disease-specific therapy in 63.9% (92/144), initiate specialty referral in 90.3% (130/144) and alter immunosuppression in 56.9% (82/144). Thus, beyond diagnostic testing for kidney disorders, sequence annotation identified monogenic disorders associated with common post-transplant complications in 9.1% of KTR, with important clinical implications. Incorporating genetic diagnostics for transplant morbidities would enable personalized management in pre- and post-transplant care.

2.
Am J Transplant ; 23(5): 597-607, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868514

RESUMO

The growing accessibility and falling costs of genetic sequencing techniques has expanded the utilization of genetic testing in clinical practice. For living kidney donation, genetic evaluation has been increasingly used to identify genetic kidney disease in potential candidates, especially in those of younger ages. However, genetic testing on asymptomatic living kidney donors remains fraught with many challenges and uncertainties. Not all transplant practitioners are aware of the limitations of genetic testing, are comfortable with selecting testing methods, comprehending test results, or providing counsel, and many do not have access to a renal genetic counselor or a clinical geneticist. Although genetic testing can be a valuable tool in living kidney donor evaluation, its overall benefit in donor evaluation has not been demonstrated and it can also lead to confusion, inappropriate donor exclusion, or misleading reassurance. Until more published data become available, this practice resource should provide guidance for centers and transplant practitioners on the responsible use of genetic testing in the evaluation of living kidney donor candidates.


Assuntos
Transplante de Rim , Humanos , Doadores Vivos , Seleção do Doador , Coleta de Tecidos e Órgãos
3.
Genet Med ; 25(5): 100814, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36789889

RESUMO

PURPOSE: The success of genomic medicine hinges on the implementation of genetic knowledge in clinical settings. In novel subspecialties, it requires that clinicians refer patients to genetic evaluation or testing, however referral is likely to be affected by genetic knowledge. METHODS: An online survey was administered to self-identified nephrologists working in the United States. Nephrologists' demographic characteristics, genetic education, confidence in clinical genetics, genetic knowledge, and referral rates of patients to genetic evaluation were collected. RESULTS: In total, 201 nephrologists completed the survey. All reported treating patients with genetic forms of kidney disease, and 37% had referred <5 patients to genetic evaluation. A third had limited basic genetic knowledge. Most nephrologists (85%) reported concerns regarding future health insurance eligibility as a barrier to referral to genetic testing. Most adult nephrologists reported insufficient genetic education during residency (65%) and fellowship training (52%). Lower rating of genetic education and lower knowledge in recognizing signs of genetic kidney diseases were significantly associated with lower number of patients referred to the genetic evaluation (P < .001). Most nephrologists reported that improving their genetic knowledge is important for them (>55%). CONCLUSIONS: There is a need to enhance nephrologists' genetic education to increase genetic testing use in nephrology.


Assuntos
Nefropatias , Nefrologia , Adulto , Humanos , Estados Unidos , Nefrologistas , Nefrologia/educação , Inquéritos e Questionários , Encaminhamento e Consulta , Atitude do Pessoal de Saúde
4.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36445780

RESUMO

FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRß, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.


Assuntos
Nefropatias , Miofibroblastos , Animais , Camundongos , Diferenciação Celular , Fibrose , Rim/patologia , Nefropatias/metabolismo , Miofibroblastos/metabolismo
5.
Annu Rev Med ; 74: 353-367, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36375470

RESUMO

Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.


Assuntos
Nefropatias , Adulto , Criança , Humanos , Genótipo , Nefropatias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
6.
Am J Med Genet C Semin Med Genet ; 190(3): 289-301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161695

RESUMO

Studies have shown that as many as 1 in 10 adults with chronic kidney disease has a monogenic form of disease. However, genetic services in adult nephrology are limited. An adult Kidney Genetics Clinic was established within the nephrology division at a large urban academic medical center to increase access to genetic services and testing in adults with kidney disease. Between June 2019 and December 2021, a total of 363 patients were referred to the adult Kidney Genetics Clinic. Of those who completed genetic testing, a positive diagnostic finding was identified in 27.1%, a candidate diagnostic finding was identified in 6.7% of patients, and a nondiagnostic positive finding was identified in an additional 8.6% of patients, resulting in an overall yield of 42.4% for clinically relevant genetic findings in tested patients. A genetic diagnosis had implications for medical management, family member testing, and eligibility for clinical trials. With the utilization of telemedicine, genetic services reached a diverse geographic and patient population. Genetic education efforts were integral to the clinic's success, as they increased visibility and helped providers identify appropriate referrals. Ongoing access to genomic services will remain a fundamental component of patient care in adults with kidney disease.


Assuntos
Nefrologia , Insuficiência Renal Crônica , Adulto , Humanos , Serviços em Genética , Nefrologia/métodos , Testes Genéticos/métodos , Encaminhamento e Consulta , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/terapia
7.
Genet Med ; 24(5): 1130-1138, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35216901

RESUMO

PURPOSE: The goal of Electronic Medical Records and Genomics (eMERGE) Phase III Network was to return actionable sequence variants to 25,084 consenting participants from 10 different health care institutions across the United States. The purpose of this study was to evaluate system-based issues relating to the return of results (RoR) disclosure process for clinical grade research genomic tests to eMERGE3 participants. METHODS: RoR processes were developed and approved by each eMERGE institution's internal review board. Investigators at each eMERGE3 site were surveyed for RoR processes related to the participant's disclosure of pathogenic or likely pathogenic variants and engagement with genetic counseling. Standard statistical analysis was performed. RESULTS: Of the 25,084 eMERGE participants, 1444 had a pathogenic or likely pathogenic variant identified on the eMERGEseq panel of 67 genes and 14 single nucleotide variants. Of these, 1077 (74.6%) participants had results disclosed, with 562 (38.9%) participants provided with variant-specific genetic counseling. Site-specific processes that either offered or required genetic counseling in their RoR process had an effect on whether a participant ultimately engaged with genetic counseling (P = .0052). CONCLUSION: The real-life experience of the multiarm eMERGE3 RoR study for returning actionable genomic results to consented research participants showed the impact of consent, method of disclosure, and genetic counseling on RoR.


Assuntos
Genoma , Genômica , Revelação , Aconselhamento Genético , Humanos , Grupos Populacionais
8.
Genet Med ; 24(4): 862-869, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35078725

RESUMO

PURPOSE: The goal of stratified medicine is to identify subgroups of patients with similar disease mechanisms and specific responses to treatments. To prepare for stratified clinical trials, genome-wide genetic analysis should occur across clinical areas to identify undiagnosed genetic diseases and new genetic causes of disease. METHODS: To advance genetically stratified medicine, we have developed and implemented broad exome sequencing infrastructure and research protocols at Columbia University Irving Medical Center/NewYork-Presbyterian Hospital. RESULTS: We enrolled 4889 adult and pediatric probands and identified a primary result in 572 probands. The cohort was phenotypically and demographically heterogeneous because enrollment occurred across multiple specialty clinics (eg, epilepsy, nephrology, fetal anomaly). New gene-disease associations and phenotypic expansions were discovered across clinical specialties. CONCLUSION: Our study processes have enabled the enrollment and exome sequencing/analysis of a phenotypically and demographically diverse cohort of patients within 1 tertiary care medical center. Because all genomic data are stored centrally with permission for longitudinal access to the electronic medical record, subjects can be recontacted with updated genetic diagnoses or for participation in future genotype-based clinical trials. This infrastructure has allowed for the promotion of genetically stratified clinical trial readiness within the Columbia University Irving Medical Center/NewYork-Presbyterian Hospital health care system.


Assuntos
Testes Genéticos , Doenças não Diagnosticadas , Adulto , Criança , Testes Genéticos/métodos , Genômica , Humanos , Atenção Terciária à Saúde , Sequenciamento do Exoma/métodos
9.
J Am Soc Nephrol ; 32(11): 2958-2969, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34670811

RESUMO

BACKGROUND: The long-term outcome of COVID-19-associated collapsing glomerulopathy is unknown. METHODS: We retrospectively identified 76 native kidney biopsies from patients with history of COVID-19 between March 2020 and April 2021. Presenting and outcome data were obtained for all 23 patients with collapsing glomerulopathy and for seven patients with noncollapsing podocytopathies. We performed APOL1 genotyping by Sanger sequencing, immunostaining for spike and nucleocapsid proteins, and in situ hybridization for SARS-CoV-2. RESULTS: The 23 patients with COVID-19-associated collapsing glomerulopathy were median age 57 years (range, 35-72), included 16 men, and were predominantly (91%) Black. Severity of COVID-19 was mild or moderate in most (77%) patients. All but one patient presented with AKI, 17 had nephrotic-range proteinuria, and six had nephrotic syndrome. Fourteen (61%) patients required dialysis at presentation. Among 17 patients genotyped, 16 (94%) were high-risk APOL1. Among 22 (96%) patients with median follow-up at 155 days (range, 30-412), 11 (50%) received treatment for COVID-19, and eight (36%) received glucocorticoid therapy for podocytopathy. At follow-up, 19 (86%) patients were alive, and 15 (68%) were dialysis free, including seven of 14 who initially required dialysis. The dialysis-free patients included 64% (seven of 11) of those treated for COVID-19 and 75% (six of eight) of those treated with glucocorticoids for podocytopathy. Overall, 36% achieved partial remission of proteinuria, 32% had no remission, and 32% reached combined end points of ESKD or death. Viral infection of the kidney was not detected. CONCLUSIONS: Half of 14 patients with COVID-19-associated collapsing glomerulopathy requiring dialysis achieved dialysis independence, but the long-term prognosis of residual proteinuric CKD remains guarded, indicating a need for more effective therapy.


Assuntos
COVID-19/complicações , Glomérulos Renais/patologia , Podócitos/patologia , Insuficiência Renal/patologia , Insuficiência Renal/virologia , Adulto , Idoso , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Diálise Renal , Insuficiência Renal/terapia , Estudos Retrospectivos , Resultado do Tratamento
10.
Am J Med Genet A ; 185(2): 508-516, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-36046768

RESUMO

Population-based genomic screening has the potential to improve health outcomes by identifying genetic causes of disease before they occur. While much attention has been paid to supporting the needs of the small percentage of patients who will receive a life-altering positive genomic screening result that requires medical attention, little attention has been given to the communication of negative screening results. As there are currently no best practices for returning negative genomic screening results, we drew on experiences across the electronic medical records and genomics (eMERGE) III Network to highlight the diversity of reporting methods employed, challenges encountered in reporting negative test results, and "lessons learned" across institutions. A 60-item survey that consisted of both multiple choice and open-ended questions was created to gather data across institutions. Even though institutions independently developed procedures for reporting negative results, and had very different study populations, we identified several similarities of approach, including but not limited to: returning results by mail, placing results in the electronic health record via an automated process, reporting results to participants' primary care provider, and providing genetic counseling to interested patients at no cost. Differences in procedures for reporting negative results included: differences in terminology used to describe negative results, definitions of negative results, guidance regarding the meaning of negative results for participants and their family members, and recommendations for clinical follow up. Our findings highlight emerging practices for reporting negative genomic screening results and highlight the need to create patient education and clinical support tools for reporting negative screening results.

11.
Genet Med ; 22(10): 1667-1672, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32555418

RESUMO

PURPOSE: The Electronic Medical Records and Genomics (eMERGE) Consortium integrated biorepository-based research with electronic health records (EHR) to return results from large-scale genetic tests to participants and uploaded those data into the EHR. This article explores the ethical issues investigators encountered in that process. METHODS: We conducted in-depth, semistructured interviews with study personnel of the eMERGE-III Consortium sites that returned results. RESULTS: We discuss major ethical issues that arose while attempting to return research results from the eMERGE Consortium to individual participants. These included difficulties recontacting those participants who had not explicitly consented to such and disclosing results to many participants with insufficient infrastructure and staff. Investigators reported being driven by a supererogatory clinical impulse. CONCLUSION: All these issues ultimately derive from ethical conflicts inherent to translational work being done at the interface of research and clinical care. A critical rethinking of this divide is important, but infrastructural support for such work is necessary for an ethically sound rollout of large-scale genetic testing.


Assuntos
Registros Eletrônicos de Saúde , Genômica , Pesquisa em Genética , Humanos , Pesquisa Translacional Biomédica
13.
Ann Intern Med ; 170(1): 11-21, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476936

RESUMO

Background: Exome sequencing is increasingly being used for clinical diagnostics, with an impetus to expand reporting of incidental findings across a wide range of disorders. Analysis of population cohorts can help reduce risk for genetic variant misclassification and resultant unnecessary referrals to subspecialists. Objective: To examine the burden of candidate pathogenic variants for kidney and genitourinary disorders emerging from exome sequencing. Design: Secondary analysis of genetic data. Setting: A tertiary care academic medical center. Patients: A convenience sample of exome sequence data from 7974 self-declared healthy adults. Measurements: Assessment of the prevalence of candidate pathogenic variants in 625 genes associated with Mendelian kidney and genitourinary disorders. Results: Of all participants, 23.3% carried a candidate pathogenic variant, most of which were attributable to previously reported variants that had implausibly high allele frequencies. In particular, 25 genes (discovered before the creation of the Exome Aggregation Consortium, a genetic database comprising data from a large control population) accounted for 67.7% of persons with candidate pathogenic variants. After stringent filtering based on allele frequency, 1.4% of persons still had a candidate pathogenic variant, an excessive rate given the prevalence of monogenic kidney and genitourinary disorders. Manual annotation of a subset of variants showed that the majority would be classified as nonbenign under current guidelines for clinical sequence interpretation and could prompt subspecialty referrals if returned. Limitation: Limited access to health record data prevented comprehensive assessment of the phenotypic concordance with genetic diagnoses. Conclusion: Widespread reporting of incidental genetic findings related to kidney and genitourinary disorders will require stringent curation of clinical variant databases and detailed case-level review to avoid genetic misdiagnosis and unnecessary referrals. These findings motivate similar analyses for genes relevant to other medical subspecialties. Primary Funding Source: National Institute of Diabetes and Digestive and Kidney Diseases and National Human Genome Research Institute.


Assuntos
Sequenciamento do Exoma , Doenças Urogenitais Femininas/genética , Nefropatias/genética , Doenças Urogenitais Masculinas/genética , Adulto , Idoso , Erros de Diagnóstico , Feminino , Frequência do Gene , Humanos , Achados Incidentais , Masculino , Sobremedicalização , Encaminhamento e Consulta
14.
Nat Rev Nephrol ; 14(2): 83-104, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307893

RESUMO

Technologies such as next-generation sequencing and chromosomal microarray have advanced the understanding of the molecular pathogenesis of a variety of renal disorders. Genetic findings are increasingly used to inform the clinical management of many nephropathies, enabling targeted disease surveillance, choice of therapy, and family counselling. Genetic analysis has excellent diagnostic utility in paediatric nephrology, as illustrated by sequencing studies of patients with congenital anomalies of the kidney and urinary tract and steroid-resistant nephrotic syndrome. Although additional investigation is needed, pilot studies suggest that genetic testing can also provide similar diagnostic insight among adult patients. Reaching a genetic diagnosis first involves choosing the appropriate testing modality, as guided by the clinical presentation of the patient and the number of potential genes associated with the suspected nephropathy. Genome-wide sequencing increases diagnostic sensitivity relative to targeted panels, but holds the challenges of identifying causal variants in the vast amount of data generated and interpreting secondary findings. In order to realize the promise of genomic medicine for kidney disease, many technical, logistical, and ethical questions that accompany the implementation of genetic testing in nephrology must be addressed. The creation of evidence-based guidelines for the utilization and implementation of genetic testing in nephrology will help to translate genetic knowledge into improved clinical outcomes for patients with kidney disease.


Assuntos
Sequenciamento do Exoma , Testes Genéticos/métodos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Nefropatias/genética , Nefrologia/métodos , Aberrações Cromossômicas , Anormalidades Congênitas/genética , Aconselhamento Genético , Testes Genéticos/ética , Testes Genéticos/legislação & jurisprudência , Genômica/ética , Genômica/legislação & jurisprudência , Humanos , Nefropatias/diagnóstico , Grupos Minoritários , Menores de Idade , Sistema Urinário/anormalidades
16.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100090

RESUMO

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Assuntos
Anormalidades Congênitas/genética , Exoma/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Alelos , Animais , Estudos de Casos e Controles , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Heterogeneidade Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Hereditariedade/genética , Homozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Fenótipo , RNA Longo não Codificante/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética , Peixe-Zebra
17.
JCI Insight ; 1(19): e86934, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27882344

RESUMO

The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Podócitos/citologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Movimento Celular , Rim , Camundongos , Camundongos Knockout
18.
Kidney Int ; 90(6): 1262-1273, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27591083

RESUMO

Primary glomerulocystic kidney disease is a special form of renal cystic disorder characterized by Bowman's space dilatation in the absence of tubular cysts. ZEB2 is a SMAD-interacting transcription factor involved in Mowat-Wilson syndrome, a congenital disorder with an increased risk for kidney anomalies. Here we show that deletion of Zeb2 in mesenchyme-derived nephrons with either Pax2-cre or Six2-cre causes primary glomerulocystic kidney disease without tubular cysts in mice. Glomerulotubular junction analysis revealed many atubular glomeruli in the kidneys of Zeb2 knockout mice, which explains the presence of glomerular cysts in the absence of tubular dilatation. Gene expression analysis showed decreased expression of early proximal tubular markers in the kidneys of Zeb2 knockout mice preceding glomerular cyst formation, suggesting that defects in proximal tubule development during early nephrogenesis contribute to the formation of congenital atubular glomeruli. At the molecular level, Zeb2 deletion caused aberrant expression of Pkd1, Hnf1ß, and Glis3, three genes causing glomerular cysts. Thus, Zeb2 regulates the morphogenesis of mesenchyme-derived nephrons and is required for proximal tubule development and glomerulotubular junction formation. Our findings also suggest that ZEB2 might be a novel disease gene in patients with primary glomerular cystic disease.


Assuntos
Doenças do Sistema Nervoso Central/genética , Esmalte Dentário/anormalidades , Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodomínio/fisiologia , Doenças Renais Císticas/genética , Rim/embriologia , Proteínas Repressoras/fisiologia , Animais , Proteínas de Ligação a DNA , Fator 1-beta Nuclear de Hepatócito/metabolismo , Rim/metabolismo , Camundongos Knockout , Proteínas Repressoras/metabolismo , Canais de Cátion TRPP/metabolismo , Transativadores/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco
19.
Artigo em Inglês | MEDLINE | ID: mdl-23408557

RESUMO

Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.


Assuntos
Sistema Urinário/metabolismo , Mapeamento Cromossômico , Humanos , Transdução de Sinais/genética , Ureter/crescimento & desenvolvimento , Ureter/metabolismo , Uretra/crescimento & desenvolvimento , Uretra/metabolismo , Bexiga Urinária/crescimento & desenvolvimento , Bexiga Urinária/metabolismo , Sistema Urinário/anormalidades , Sistema Urinário/crescimento & desenvolvimento , Anormalidades Urogenitais , Refluxo Vesicoureteral/genética , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/patologia
20.
Cell Rep ; 2(1): 52-61, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22840396

RESUMO

Robo2 is the cell surface receptor for the repulsive guidance cue Slit and is involved in axon guidance and neuronal migration. Nephrin is a podocyte slit-diaphragm protein that functions in the kidney glomerular filtration barrier. Here, we report that Robo2 is expressed at the basal surface of mouse podocytes and colocalizes with nephrin. Biochemical studies indicate that Robo2 forms a complex with nephrin in the kidney through adaptor protein Nck. In contrast to the role of nephrin that promotes actin polymerization, Slit2-Robo2 signaling inhibits nephrin-induced actin polymerization. In addition, the amount of F-actin associated with nephrin is increased in Robo2 knockout mice that develop an altered podocyte foot process structure. Genetic interaction study further reveals that loss of Robo2 alleviates the abnormal podocyte structural phenotype in nephrin null mice. These results suggest that Robo2 signaling acts as a negative regulator on nephrin to influence podocyte foot process architecture.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Podócitos/citologia , Podócitos/ultraestrutura , Receptores Imunológicos/fisiologia , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/fisiologia , Podócitos/metabolismo , Podócitos/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...